Climate Zone Classification
Climate regions are classified using long-term precipitation and temperature records to describe the typical weather conditions expected in an area. Designers and engineers can use climate zones to benchmark buildings and make early decisions on building HVAC, facade types, fenestrations, and insulation levels. The building industry uses two main climate classifications: the Koppen-Gieger Climate Classification and the International Code Council (ICC) / American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) climate zones. Additionally, a limited method, Design Degree Days, combines temperature and time.
On a global scale, the Koppen-Geiger Climate Classification is a system most widely used for ecological modeling such as climate change impact assessments. It divides the world into five main climate groups: equatorial (A), arid (B), warm-temperate (C), snow (D), and polar (E). The five main climate groups are further subdivided based on precipitation and temperature. Precipitation categories include desert (W), steppe (S), fully humid (f), dry summer (s), dry winter (w), and monsoon (m). Temperature categories include hot arid (h), cold arid (k), hot summer (a), warm summer (b), cool summer (c), extremely continental (d), polar frost (F), or polar tundra (T).
In the United States, the ICC and ASHRAE developed a single map for climate zone classification. The ICC/ASHRAE climate zone map has eight climate zones ranging from 1 (hottest) to 8 (coldest) and three moisture regimes: Moist (A), Dry (B), or Marine (C).
Last updated